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Summary. — A systematic study is made of the invariance of field theories
under charge conjugation in order to indicate all possible selection rules
due to charge conjugation alone or combined with charge symmetry or
charge independence. 1t is shown that when isotopic spin formalism is
used, invariance under charge conjugation corresponds to conservation
of isotopie parity.

As is well known, present theories are invariant with respect to charge
conjugation (1-2), i.e. there is a complete symmetry between the two ¢« charge
conjugate » states of particles whose fields are described by non-hermitian
operators (complex wave function in the usual loose terminology), and the
exchange of these two charge conjugate states is called charge conjugation,
Fields described by hermitian operators (real wave functions), as the electro-
magnetic field, contain particles with only one state (no antiparticles); these
gelf-charge conjugate particles will be called «strictly neutral ». The theory
of «strictly neutral » particles of spin 1/2 is due to MAJORANA. (?)

‘Tt is expected that invariance of the theory under charge conjugation gives
selection rules: some of them have been found by FURRY (%¢) . In the same

(*) At the Institute for Theoretical Physics, the University of Copenhagen.

(") H. A. KrRAMERS: Proc. Kon. Ac. Welensch. Amsterdam, 40, 814 (1937).

(?) E. MajoraNa: Nuovo Cimenio, 14, 171 (1937).

(]) W. H. Ftrry: Phys. Rev., 51, 125 (1937).

(*) After this work was completed, the paper of L. WoLrENSTEIN and D. G. RAVEN-
HALL: Phys. Rev., 88, 279 (1952) can.e to my notice. Tt contains many of the results
of section 1 and 2 and therefore gives a fairly complete list of the selection rules due
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way, the combination of invariance with respect to charge conjugation and
charge symmetry (exchange of protons and neutrons) leads to new selection
rules. Those analogous to Furry’s theorem have been found, some of them
by FukuDpA and MIVYAMOTO (°) (see also NISHIJAMA (%), VAN WYCK (%)), the
others by the author (*). They have recently been proved quite generally
by Pais and JosT (8). These authors use S-matrix formalism without the use
of a power series expansion.

It is intended in this paper to study systematically and to indicate all
other possible selection rules due to charge conjugation (alone or in combin-
ation with other invariances). Indeed selection rules due to charge conjug-
ation are of fundamental character; they are due to the invariance of the
formalism with respect to given groups. Our program is therefore to deter-
mine these groups, it then will be an easy matter to indicates all possible se-
lection rules. This deduction does not make any assumption about the pos-
sible methods for solving the starting equations.

For instance: charge independance of nuclear forces is obtained by the
agsumption of conservation of isotopic spin (invariance with respect to the
group R; of rotations in the three dimensional isotopic space). We shall see
that charge conjugation is linked with the conservation of isotopic parity
(invariance under reflexions in isotopic space). For instance, to include charge
conjugation considerations in the study of w-mesons (assumed to be pseudo-
scalar symmetric) one shall consider them as polar vectors in isotopic space.

Aside electrodynamics, for the sake of simplicity, only the usual meson
theories (?) will be studied in this paper; the extension of the method to other
field theories will be obvious.

In the application of new selection rules, it is useful to remember the other
selection rules. Those due to energy momentum conservation are evident;
the complete list of those due to angular momentum and parity conservation
does not seem generally known and is given in appendix.

to charge conjugation alone. Since our method is more general (we do not need
explicit calculations) and complete, it seems desirable to present a self-contained
treatment. The results already obtained by WoOLFENSTEIN and RAVENHALL will be
denoted by the reference (4). »
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1. — Electrodynamies.

On the advice of some physicists, group theory will not be (explicitly!)
used in this section. Of course, section 1 is only an example of application
of section 2.

1°1. — In what cases will selection rules due to charge conjugation appear?

To charge conjugation corresponds an operator ¢ which exchanges po-
sitons and negatons (the two states of charge of electron) and transforms
photons into themselves. It therefore satisfies (1°):

1) =1,

It is not necessary here to enter into details about the well known question
of invariance of electrodynamics under charge conjugation. The operator ¢
commutes with the total Hamiltonian and its eigenvalues ¢= --1 are therefore
constants of motion. The eigenstates of C are the states of total charge zero
i.e. containing photons and/or (!) the same number of positons and negatons.
Any state can be decomposed into a sum of two eigenstates of C:

) WP, Y
with
(29 |a|®+[f]?=1 and C¥, - +¥,.

The commutation of ¢ with the total Hamiltonian implies that |«|2 and
[B|? are constants independent of time.

Let us consider a state ¥ of well defined charge and its charge conjugate
Y'= C¥. If the total charge is 5 0, ¥ and ¥’ are two linearly independent
state vectors and from C(¥ + ¥') = 4 (¥ + ¥') we easily deduce that for
¥ (or ¥, |a|2=|f#|?>=1/2. Since this is true for any state of total charge
# 0, no selection rules due to charge conjugation will occur for such states.

We are therefore left with the task of studying the eigenstates of € (since

(**) The equation (1) must be read: (* is the physical identity. Indeed normalized
state vectors are defined only up to a phase factor and C? can be equal to a phase
factor. There is here no lack of generality to take (2= 1: see note (21),

(*!) The expression and/or is used several times in this paper. « A4 andfor B » means
«either 4 and B, or 4, or B
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any state of zero charge is a statistical mixture of two of them). One (12) is
the vacuum ¥,. It is sufficient to compare the eigenvalue of eigenstates of C
with that of the vacuum; but, for simplicity, we define the eigenvalue of the
vacuum as -+ 1.

1:2. Stales containing only photons. — A state with one photon is of the
form A*Y, where 4* ig the electromagnetic field. Now, from the commu-
tation of C with the total Hamiltonian one hag

(3) CA¥j, 01 = A%, .

The exchange of positons and negatons changes the sign of the current

(4) 0§07 =~ ,

therefore

4") CA*C1 = — A*,

and

4") CA*Y, = CA*C-CV) = — AW, .

An easy generalization of this gives:

The eigenvalue of C for states containing n photons is ¢ = (— 1)*. This is
equivalent to Furry’s theorem and applies as well to virtual photons if one
uses perturbation theory.

1'3. Positronium. — Positronium is the simplest and most interesting case
of states with the same number of positons and negatons. We consider both
bound and unbound states of positronium.

Indeed C commutes with the energy, momentum, orbital angular mo-
mentum, spin, parity operators (they are invariant under charge conjugation).
A linear operator that commutes with each of a complete set of commuting

(12) It is not trivial that the vacuum is an eigenstate of C because it can be de-
scribed as a degenerate state, as for instance in the indefinite metric formalism (8. Gupra:
Proc. Phys. Soc., A 63, 681 (1950); K. BLEULER: Helv. Phys. Acta, 23, 567 (1950))
there all states of the vacuum are defined by «no electrons, no transversal photons,
# longitudinal photons and » scalar photons present ». As will be seen from (4”') all
these states which differ from each other by an even number of photons belong to the
same eigenvalue of C.
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dynamical variables is a function of them (1*). Such a complete set com-
muting with C is easy to find in the case of positronium. Since ¢ commutes
with Lorentz transformations we choose as reference of coordinates the center
of mass system; then L2, L, 8% 8§, (orbital and spin momenta) for the large
components of the electron field form a complete set of commuting dyna-
mical variables. The Pauli principle requires that the states of positronium
must be antisymmetrical with respect to space, spin and charge coordinates
of the two particles. .
The symmetry character corresponding to the exchange of

space coordinate is: (— 1);
spin coordinates is: & = 28 — 1 (for triplet states = 1, for singlet = — 1);

charge coordinates is: ¢ =: the eigenvalue of C.

Therefore
(5) IR IR

Another constant of motion is the spatial parity u, that is the eigenvalue
of the operator which reflects space coordinates through the origin, For po-
sitronium u == — (- - 1): (see appendix); since ¢ is also a constant of motion,
it follows that & is also a constant of motion (4).

Bound states of positronium are generally not degenerate (outside the
trivial J, degeneracy) and therefore are eigenstates of ¢ and 8, but not of L:
the orbital momentum is a mixture of L and L -+2 (for the large components).
Since the mixture of L and L2 is irrelevant to our considerations we shall use
the ordinary spectroscopic notations for simplicity. By emission of a photon
the positronium undergoes transition from the state ‘L to the state L’ and
we must have for these states ¢ == -—¢' (since a photon is odd under charge
conjugation). This selection rule can be written (4)

6) E- 1= —EC 1.

Consequently, there are lines existing in the corresponding hydrogen
spectrum which are absolutly forbidden in the positronium spectrum (15):

(1) For instance: P. A. M. Dikac: The principles of quantum mechanics (32 ed.
Oxford, 1947), p. 78.

(**) After this work was finished 1 heard from Prof. GELL-MANN that he has found
these rules by perturbation theory some years ago but did not publish them. See
also R. FBERREL'S thesis (Princeton) for the annihilation of positrenimm.

(**) Of course, these transitions can be induced by collisions with electrons of sur-
rounding atoms or molecules, since the total charge of the electron field is no longer zero.
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such lines are for instance the quadrupole transitions. However electric dipole
transitions (L'= L + 1, &= &) are allowed and therefore it seems practically
impossible to obtain experimental test of this selection rule. Moreover the
excluded lines are no longer forbidden when positronium is placed in an
external field; indeed ¢ is then no longer a good quantum number since the
interaction of the external field is not symmetrical in the two particles of
opposite charge.

There is also a selection rule for the decay of the positronium into » pho-
tons (%14), since we must have

(1) 0= (—1)".

Hence for the lowest state of positronium:

38 state (¢ = - 1) cannot decay into an even number of photons,

1§ state (¢==1) cannot decay into an odd number of photons.

It must be noted (and this will be used in 2°4) that there are states of
positroniunr for any given set of values of total angular momentum J and
parity «, but not always with both values of ¢. The non existing sets of values
are J =0, ¢=—1 and ¢ =—u =— (— 1)".

Up to now, all solutions of problems in electrodynamics have been obtained
by perturbation theory, which allows us to think at all stages of the calcul-
ation in terms of particles either real or virtual. The nature of the proofs
given above shows that the results obtained apply as well to virtual particles.
As it was the case for Furry’s theorem, these results can therefore be useful for
perturbation calculations since they predict what terms will vanish. For exam-
ple, in the study of levels in positronium (1¢) we have a correction to the energy
due to the virtual annibilation of the pair. All corrections (including radiative
corrections to any order) due to one (or any odd number) quantum virtual
annihilation will exist only for states with ¢ = -— 1 and corrections due to
two (or any even number) quantum virtual annihilation will exist only in
states with ¢ = 1. This agrees with published calculations (1%18).

1°4. Case of other fields in interaction with the electromagnetic field. — The
extension of the preceding section to this case is obvious, but has less physical

(*¢) This was suggested to me by Dr. B. MOTTELSON.

(*7) J. PiRENNE: Arch. Sci. Phys. Nat., 29, 265 (1947); see also B. V. BERETRTSKI:
Journ. Exp. Theor. Phys., 19, 673 (1949) and R. FErrELL’S thesis (Princeton, 1952)
where one y virtual annihilation is treated.

(18) R. KarrLus and A. KLEIN: Phys. Rev., 87, 849 (1952) where one and two
v annihilations are treated.
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interest. For the case of charged fields of spin 1/2, it is sufficient to replace
everywhere the word «electron » by proton, or p-meson, etc.

Ag for positronium, it must also be noted that for a system of two charge
conjugate bosons of spin 0, the excluded values of ¢ are ¢ = — (— 1)’ since
J = L and since Bose statistics requires ¢(— 1)* = 1. For a system of two
charge conjugate spin 1 bosons with non zero rest mass, the only excluded
value of ¢ is ¢=—--1 for J == 0.

2. — Extension to non-electromagnetic charge.

2'1. — The notation of charge can be extended to other couplings. There
i no longer charge conservation, except if the theory is invariant under gauge
transformations of the first type (%), i.e. under the group of transformations
G(a), (where « is a real constant), which transform charged field operators
according to (20):

@) G)pG (@) = pe' | Ga)p*G i) = y*e=™.
For charged boson fields we have
‘(9) (,"'l/)(/'_l = ’(p* y (,"q)*(;' 1 .. Y.

Without restriction of generality this also holds for fermion fields (i.c. fields
.described by spinor quantities) if a suitable equivalence transformation is
made on them. For Dirac fields, this corresponds to the choice of a Majorana
representation (2) of Dirac matrices.

The operators G(x) form a group K, isomorphic to the group of rotations
around an axis. From (8) and (9) one sees that:

(10) =1,  CGa) == G(—a)C.

(1*) Unhappily. physicists used the same word « gauge » for two kinds of trans-
formations, but they distinguish between the two of them (see W. Patwni: Rer. Mod.
Phys., 13. 203 (1941)) by calling the one used here « gauge transformation of the first
types. 'This is a particular case of the second type i which « is a function of space
and time coordinates. Transformation of the second type is used when the boson
has at least one state of zero mass (K. LE COUTEUR: Nature. 165. 106 (1951)).

(2°) Ax usual in field theory papers, ¥ means the hermitian conjugate operator
.and therefore the complex conjugation for ordinary numbers, For spinor fields with
several components, the corresponding index will be omitted in this paper, but these
components will be considered as a one column matrix (whose elenients are operators!).
"The simbol ~ means transposed.

21 - 11 Nuovo Cimento,
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Therefore C corresponds to a reflexion through a plane containing this axis.
In other words, the operators C and G(x) form a group isomorphic to O, the
real orthogonal group in two dimensions (*') (group €, of symmetry of.hetero-
nuclear molecules). All the non-equivalent irreducible unitary representations
of O, are known, all are two dimensional except the two 9

. e 0 0 1
(11) D, with m>0 G(OC) '_>'( 0 e—ima) C— (1 0) ’

(11") D with e=+1 Ga)—>1 C—>c¢.

These representations are univalent only for m integer. For simplicity we
shall restrict s to be an integer in section 2 and 3.

The product of such representation is decomposed into irreducible re-
presentations according to:

(12) Dt X Do = D rcn + Dymr—nr] m' = m’
(12') D) x D,,(I1) = Do,,([T) + 25 (CT) + 25 ),

(12") D XD =D,

(12") D (1) x D5 (IT) = D4(T]) with &= ¢'¢".

Les us call I and II the respective variables of the spaces of the representations
D (I) and D(II). When these two representations have the same m the irre-
ducible representations of G, obtained by decomposition of the direct product
D(I) xD(I1) are direct sums of equivalent irreducible representations of the

permutation group of the two variables T and I ([TJ is for symmetric, B for
antisymmetric). This occurs in (12') and (12”). Tt is important when we
deal with two identical particles.

Any state vector belongs to the space of a representation (not irreducible
in general). From its physical meaning, the vacuum must belong to the trivial
representation, in which each element of the group is represented by the unit
matrix. From section 1 we see that for electrodynamics a state with one
photon belongs to @, and a state with one electron to an arbitrary but fixed

(3') Of course reflexion through any plane also represents charge conjugation, and
the product of two reflexions through planes making an angle /2 with each other will
multiply the field operators by the phase ¢?f. What is not ambiguous however is the
correspondence between charge ccnjugation, gauge invariance on one hand and the
linear unitary representations of group 06, on the other hand.
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representation 9,,, the two dimensions corresponding to the two independant
charge conjugate states: one positon or one negaton. More generally a state
vector which describes a system of p photons and ¢ electrons is a vector in
the space of the representation (D-)» x (D, ) and this vector is fixed as long
as the system is isolated.

If we had taken in account charge conservation only, we would have dealt
with the one dimensional representations d,, (with m integer 2 0) of the gauge
invariance group R,. Irreducible representations of @, are generally reducible
repregentations of its subgroup R,; the decomposition is according to

(13) D, —>d, +d_,, (m > 0)

(13") D, —d, .

Different irreducible representations of O, give different representations of R
except D, and 9, which both give d,. Therefore it is only for states of tota
charge zero that we shall have selection rules due to charge conjugation and
not to eharge conservation. These selection rules are imposed by the con-
servation of & == ¢ in the representations 2;.

2:2. Case of neutral boson fields coupled with a Dirac field. ~ As an example
of application of the general considerations given in 2'1 we now study the
case of neutral boson fields coupled with a Dirac field. For simplicity we
deal only with the customary meson theories (see for instance KEMMER (?).
More precisely we congsider only couplings linear in spin 0 or spin 1 boson
fields or their first derivatives, and which do not contain derivatives of the
Dirac. As is well known these couplings are of the form B-J where B is
either one of the four boson fields or its gradiant (in four dimensions); the
« dot » indicates a scalar product and J is one of the five invariants (scalar s,
vector v, skew tensor ¢, pseudovector a and pseudosecalar p) that one can form
with a Dirac field and its conjugate (3?):

1 ~
(14) Ji= S M*Foy— g Fyp*]; i, 1tob.

The F; are 1, 4, 6, 4, 1 linear independant four row four column matrices
which, in the Majorana representation (2), are either symmetric or skew-

_ (*%) More loosely J; is often written P*Fyeince F*F.p — — gF, p* when
vy 4 gyt = 0.
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symmetric (23):

(15) F,=—0,F, with 6,=1,—1,—1,1,1.

Thus from (9) we find that:

(16)  0F07t= L fFRy* — 5 Fayl= o i FFap* + FFp) = 0.7,
so that the charge conjugation of the interaction B-J requires
| amn CB,C1=10.B.

The eight types of coupling will be denoted here (as in (7)) by Ss, Vv Aa Pp
for those which do not involve derivatives of the boson field and by Sv, Vi,
At, Pa for the others. The coupling constants f are now the charges of the
fermions. The J’s are invariant under gauge transformation (see (8) and (**))
as are the B’s since they describe « strictly neutral » bosons; therefore there
is charge conservation. Moreover (17) shows that:

Pp, Pa, 8s and Aae bosons belong to 9D, , since then §, =1,

Vv, Vt, Sv and At bosons belong to @, since then 0, =-—1.

S and A bosons with both types of couplings are not described by irreducible
representations and therefore do not lead to selection rules for charge con-
jugation; consequently § or A bosons considered in the following will have
only one type of coupling.

The extension of Furry’s theorem (made by FURRY himself (%)) is then
straightforward:

THEOREM 1. A reaction between neutral bosons through one interme-
diary fermion field is forbidden if the total number of v and ¢ couplings is
odd (%4).

(23) The notations used here are those of reference (7). For the equation (15) see
W. PavLr: Ann. Inst. H. Poincaré, 6, 109 (1936), where the corresponding property
for an arbitrary hermitian representation of Dirac matrices is proved. In Majorana
representations, the matrix C of PaurLr's paper is == 1.

(2*) ¥V and P bosons can have both their coupling terms; evidently Vv and 17t
or Pp and Pa couplings of the same meson are only counted as one.



SELECTION RULES IMPOSED BY CHARGE CONJUGATION 329

Indeed this reaction is represented by

(18) Moy =112,

f

which implies J] ¢, = 1, where i = initial, f = final and ¢ = all. The most

interesting case of application is the spontaneous decay of a boson (the other
selection rules occuring in this case are listed in the appendix). For instance
7°® mesons (P bosans) cannot decay into an odd number of photons.

The extension of 1-3 to system of one fermion and its antiparticle is also
straightforward; as before we have ¢ = — &(— 1) and ¢ is a good quantum
number. The production of bosons by collision of a fermion with its anti-
particle requires that ¢'= ¢ for P or Ss or Aa bosons, ¢'=—c¢ for V or At
or Sv bosons. States with ¢ = 1 cannot decay into an odd number of V, 4
or St bosons. States with ¢ = — 1 cannot decay into an even number of Vi
At, St bosons and/or any number of P, 8s, Aa bosons (other selection rules
for annihilation are found in appendix).

2:3. Cases with no conservation of charge. — Of course charge conjugation
ean also be studied in theories without charge conservation. But it is then
trivial. For instance, let us suppose that in 2'2 the fermion field is a field of
MAJORANA () (i.e. «strictly neutral ») particles. Then yp = * and (14) shows
that J, = J; = 0. The theory is invariant under the group of two elements 1,
C which has two representations: ¢ = 4 1. Each pair of fermions belong
to ¢ = 1 and can annihilate into any number of bosons. The same applies
to the interaction of 2'2 where, in a Majorana representation,

1 - ]
(19) Ji= 3 (§Fwy + §*Fp*],

J,=dJ,;=10. Here there is no charge conservation and onlv pairs of identical
fermions can annihilate.

2:4. Most general case, with several kinds of charges. — The study of charge
conjugation can be extended to any kind of couplings in present field theories
(see also (7)). Here we want to study the most general case. Indeed a charged
particle can be neutral for some charges: for example, electromagnetic-charged
mesons have no nuclear charge. We need to consider only the charges which
are conserved. To cach kind of charge corresponds a gauge group. Let us
call @ the direct product of all these gauge groups; the representations
A mm,,.., (With m; 2 0) are one-dimensional. Tet us add to ¢ the (unique)
operation of charge conjugation. The new group has two dimensional repre-
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sentations Dy, m ., (With m;> 0) and two one dimensional representations
D;0,0,., (With & = 4+ 1), to which belong self-charge conjugate systems. The
extensions of the considerations of section 2'1 to this section 2-4 is obvious.
Therefore selection rules due to charge conjugation will appear only for self-
charge conjugate systems and those are very easy to select. When they do
not contain an odd number of any kind of «strictly neutral » particles, no
knowledge of the nature of the couplings is necessary for the determination
of their representation. For self-charge conjugate systems containing only
one pair of charged particles, we have already foundthe list of forbidden values
of ¢ for spin 1/2 (in 1'3) and spin 0 and 1 (in 1-4), since this does not depend
on the nature of the charge.

For instance, from this there results the following rule: An S» meson cannot
decay into a positon-negaton pair (+25) or into a pair of conjugated charged
mesons of spin 0 (as wt + =) or spin 1 (%%). '

3. — Charge symmetry.

3'1. Charge symmetry and charge conjugation. — Charge symmetry is the
hypothesis that the formalism is invariant under exchange of protons and
neutrons. It seems to be a reasonable hypothesis for then it implies the
equality of the specific nuclear nn and pp forces. Let us call N the operator
exchanging p and »; it also exchanges § (antiproton) and # (antineutron).
We have N2= 1 and it is very easy to see from (8) and (9) that N commutes
with ¢ and G(x). Therefore N, C and G(«) form a group isomorphic to the
direct product (1 + N)xO,, isomorphic to the group D, of symmetry of
homonuclear diatomic molecules. TIts irreducible representations are all given
by the direct product of those of 0, and 1 + N. The group 1 4+ N has only
two representations labelled # (in them N is represented by x). The repre-
sentation of D, will then be noted as those of O, but with # as left super-
script. For instance:

(20) nl@gr % nH®€H _ n@g with n= 7],7]” , e = 8'8” .

(%) This does not agree with the calculations of J. STEINBERGER: Phys. Rev., T6,
1180 (1949). T heard from Dr. H. Fuxupa that he has proved this selection rule by
the use of the equivalence theorem.

(2%) Charge conjugation also forbids the decay of a Aa meson into =t 4 n~ but
this is forbidden by parity conservation alone. Similarly, the annihilation inte n+ 4 =~
is forbidden by charge conjugation for systems of proton-antiproton or neutron-anti-
neutron with & = 1, J = L, but conservation of parity alone forbids such annihil-
ation for J = L.
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3:2. Extensions of Furry’s theorem.

3'2.1 Neutral mesons. — We shall (?) write ¢ the invariant constructed
from the meson fields themselves or the first order derivatives, J,, those
made from the neutron field and J;, those from the proton field. The inter-
action between a neutral meson field and the nucleons is

(21) 'H()i - (pi(fin']in _*_ ,fip’]ip) - gvi[in(Jin + Jip) + fis(Jin - Jip) 4

with the following relation between the coupling constants (7

1
(22) A AT A S

The effeet of the operator N is easily seen to be NJ, Nt = J,, NJ,N-1=J,
and hence mesons with pure f, coupling correspond to the +@% representation
and those with pure f, coupling to the D% When one considers only these
two kinds of neutral mesons, one gets the following extension of Furry’'s
theorem (%%): (see (18))

9 15 ~ 125
i ’
or
(24) 1% = and J[ea=1.
a a

Hence, THEOREM 2. A reaction between neutral mesons through the
nucleon field is forbidden if either the number of f, couplings is odd, or the
number of v and ¢ couplings is odd.

Photons (**) have f, = 0, therefore f, = —f, = ¢/2, thus they belong to
the reducible representation *@; + ~9D;; they are an example of non charged
symmetric mesons. With such mesons we see that theorem 2 reduces indeed
to theorem 1.

3:2.2. Charged mesons. — Only nucleons have nuclear charge: charged mesons
belong to the 9, representations but, of course, they are not self-charge conju-

(3?) Index 0 and 3 are chosen here in accordance with isotopic spin formalism :
see 4°1.

(2®) This is in accord with the current views that anomalous magnetic moments
of nucleons are not due to direct interaction with magnetic fields but result from ra-
diative processes through the charged meson field.
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gate. The interaction between charged meson and nucleon fields is
(25) Hei = fd@l P Fops + @0 Py Fayn)-

For convenience, and without lack of generality, neutron and proton fields
are made anticommuting. From CH,C'= H. we can verify that

(26) O(pIO“I:: Bl(p:k H C(}'):‘C_lz Gi(pi .
We also have
(27) NH N-1= fi(th;“N-l-i;“Fizpn + NopN-1-9¥Fw,),

therefore
NoN-'=¢, NN '=g;.

Equation (26) and (28) can also be written
(29)  Clp: £9)07= L 0dp: £ 9)), N L ¢l )N '= + (p: L ¢) -

Equation (29) means that ¢, -~ ¢¥* belong to the *9% representation and

@1—@; to the ~D;% representation. Therefore a given charge conjugate
state of a charged meson is represented by the reducible representation:
D 4 D% = FEDH with K= + 1. We can now prove the following
theorem (56) £

THEOREM 3. A reaction between charged and neutral mesons through
the nucleon field is forbidden if the total number of f;, v and ¢ couplings is odd:
Indeed such a reaction is represented by

(30) H ”OiQ)goiH (z Kv@‘fsci) — H "on);OIH (E K/Q);"f%f) .
10 ic 4 10 Ie K
Due to (20) this requires that there is at least one set of K, such that

(31) H nOaKa =1 and H goalotca = 1 y

or by eliminating the set of K,/’s, we find the following condition,

(32) I_I Noa€oalca = 1.
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3:3. Annihilation of nucleon antinucleon pairs. — From the definition of N
one sees that v, 4 v,, wi -+ ¢, belong to the eigenvalue n= +1 of N
and to the two dimensional representation "®,,. For a system of a nucleon

and antinucleon one readily sees that:
DA "Dy with £ = — §(— 1),

£ = —E(— 1),

neutral systems, n# or pP, belong to

charged systems, nf or p#, belong to *D; + "D;* with

Hence the selection rules for emission of a meson by collision of a nucleon
and an antinucleon only exist for neutral mesons emitted by neutral systems
and are those of 1'4.

From 2'2 where the representations of mesons and photons are given, it
is easy to see the corresponding rules for annihilation and this is left to the
reader (see also the appendix for absolute selection rules due to angular mo-
mentum and parity conservation). As an example, in table I, the possible
annihilations into photons and/or m-mesons (considered as pseudoscalar sym-
metrie (**)) are given for §-states ()

TaBLe I. — Possible and forbidden modes of annihilation of an antinucleon under the
consideration of conservation of angular momentum, conservation of parity, charge conjugation
and charge symmetry.

Systems States Allowed. into Allowed. into Forbidden into
2 particles 3 particles
38 70 4 3
. + (_ v o any number of =°
nt 4+ v + 2n and
R /or an even
Y+t 4w
L _ number of v
w0 4t 4=
nn or pp
18 2v 3ro an odd number of
2y + n° v and zero or any
o+ wt 4+ o number of n°
38 =t 4 no w4 2y charged = and zero
nE 4 v nt + v 4 no or any even num-
ber of =
np or pn —
18 2nt 4 gt
xt - 250 an even number
7t + w0+ of = mesons only
% 4 2-\{

(*) N. KeMMER: Proc. Camb. Phil. Soc., 34, 354 (1938).
(3%) As an example of study for the construction of table I, we give here the re-
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3:4. Remarks.

3:4.1. Selection rules due to charge symmetry only. — There are also selection
rules due only to the conservation of #, the eigenvalue of N. They will appear
for self-charge symmetric states. Such selection rules, due to charge sym-
metry only, and not to charge conjugation, do not belong properly to the
subject of this paper. See however 4-2.

3:4.2. Validity of selection rules due to charge symmetry. — These selection
rules are not absolute since they depend on the neglect of the electromagnetic
interactions. However, electromagnetic coupling is weak compared to nuclear
coupling and the selection rules due to charge conjugation combined with
charge symmetry are good approximations. The reader is referred to the
paper of PAis and JosT (8) for an interesting discussion on this point.

3'4.3. Eatension to other eouplings. — The study of charge symmetry com-
bined with charge conjugation can be extended to other kinds of couplings
involving the nucleons. As an example the reader is referred to a previous
work of the author (*), where an extension of Furry’s theorem is established
for direct coupling between a pair of nucleons and another pair of fermions
as in the Fermi theory of S3-radioactivity.

4. — Isotopic formalism and charge conjugation.

4'1. Charge independence. — The use of the isotopic spin formalisin iz well
known and here only results without proofs will be quoted. Neutrons and
protons are considered as states of the same particle, the nucleon. These
states are labelled by a two valued index: i.e. the nucleon field is represented

as a two line matrix y -= (z"): We shall use in the following the well known

Pauli matrices

B (1 0 [0 1 _(0 —-i) _(1 o)
=0 1)’ n=Ay o) = o) =0 —1)°

presentations corresponding to a system of two charged mesons:

(2 505 (D> (2 *Dp() =2+ D (L) + ~D5 () + -2;

and it is easily seen that systems of charge 2 (as 2=+ or 2x~) belong to *DI (T ]+
+-D () (it must be of course [T]) and the self-charge conjugate systems (zt+ n~)
belong either to *D([(T]) (then ¢ =7 == 1 and J = L is even, u == 1) or to “@'(E)
(then ¢ =% =—1=u, J = L is odd).
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They satisfy

(33) Ti= 1 with i=0 to 3.
Charge independance is obtained by invariance under the group R; of rotations
in the three dimensional isotopic spin space. These rotation of an angle «
around an axis whose orientation is given by the unit vector n will be denoted
by: R(x, n). The nucleon has an isotopic spin 1/2, i.e. R(x, n) induces on o
and y* the linear transformations

(34)  R(e, n)pR Y x, n) = exp [i(a/2)7, nly = cos a2 + it n (sin «/2)y ,

(3‘4/) R(d? ")V’*R‘l(“yn):exp[*’i(“/Q)T*v "]w*:(ﬁ* exp["’i(“/z)'r? n])Cmnsposcd
where T means t,, T,, Ts.
With y and its conjugate one can expect to form two quantities (see (36)):

D1/2 XDx/z - Do XDI 9

of isotopic spin I'= 0 and T= 1; they are g*y for I'= 0 and PF*vy for T=1
Hence there are two possible meson theories giving charge independent forces;
as well known the case with T'= 0 corresponds to a neutral meson theory with
coupling f,; the case T'= 1 corresponds to the symmetrical (2°) meson theories
where the meson has three isotopic states of electric charge — 1, 0, 1. The
couplings are for both theories:

(35) H=3 [ P*tFp— 37, Fyp*] = T pud
with r=0 for T=0 and r =1 to 3, fy=f.=f; for T = 1.

4°2. Charge symmetry. — We could have treated charge symmetry as we
treated charge independence by the invariance under a group isomorphic
to O,. Indeed this can be done in the isotopic spin formalism. Charge
independence which is obtained by invariance under a R; group is a particular
case of charge symmetry which is obtained by the invariance under the sub-
group G, of R,, isomorphic to the group composed of the rotations around the
third axis of the igsotopic space and the reflexions through planes containing
this axis.

The irreducible representations of R are denoted by D, (with 2J integer > 0
and the reduction of their products into irreducible representations is given by

(36) DJX-DJ’ = DJ'«J'+ Dyyymg + oo + DJJ—.I"'
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They are generally reducible representations of the subgroup O, of R, and their
decomposition is given by

(37) D, > Dy + Dypy + ... + D, for J half integer ,
(37') D, > DY+, + ...+ D, for J integer.

Since here charge symmetry is described by the invariance under the same
group, O, as is used in section 2 for the study of charge conjugation, the
consideration of section 2 can be applied here. Here selection rules due to
charge symmetry will only appear for self charge symmetrics-states, i.e. states
with the same number of p and » (or p and #!) and/or any number of neutral
mesons (even if § or 4 mesons have both types of couplings) and pair of conju-
gate charged mesons. The most interesting case for the application of such
rules are nuclear reactions with such nuclei as H?, ,He, ;Li¢, ,Be?, ;B1o, (12
N1 01 .. Bach level of these nuclei is an eigenvector of the operator N
(exchange of p and ») and the eigenvalue 7 is a good quantum number.
Indeed equation (37') shows that 5 = (— 1)7, where T is the total isotopic
spin of the nucleus when the hypothesis of charge independant forces is made.
For instance, the reaction ,0%(d, a),N1¢* is described by

[ 01+ H? > Het 4 ,Nu*,
(38) 9[
Dy X DS »DS x D

since the ground state of all these nuclei has T= 0. Therefore 5 = 1 and
excited states of ,N'¢* with 9 = — 1 cannot appear in this reaction, e.g. first
excited state. This has been recently emphasized by KrorL (31).

4-3. Charge conjugation. — We can still define ¢ by (9), where now y has
a two value isotopic index. On the explicit value of the r; matrices we can
verify that

(39) T3 = 1,1 = (T, with {,=1; —1, —1, —1.

Let us consider the following rotation in isotopic space M= R(m, n,) where n,
has components (0,1, 0). We note that C and M commute: CM= MC = U
with

(40) UypU—t = itp*, Uyp*U'= ity .

(®Y) I heard it from Prof. WEISSKOPF at the summer school des Houches. See
also the quotation of K. K. Apatr: Phys. Rev., 87, 1041 (1952), in a foot note.
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Yet R be an arbitrary rotation R(«, n) in isotopic space; we have
(41) URyRU-'=i7, exp[i(x/2)t n]yp*, RUpU-R-'=i exp[—i(x/2)v* n]T.p*

from (39)
(42) RUpU-'R'= it, exp [i(x/2)%, n]y*= URyRU-".

Similarly
(43) URy*R-'U-'=1 exp [i(a/?)'c-n] Ty = RUp*U-'R1.

Therefore U commutes with every R(x, n). The group generated by rotations
in isotopic space and charge conjugation is therefore isomorphic to the group O,,
i.e. the direct product (1 4 U)x R,. That is the group of rotations and re-
flexions in isotopic space.

The irreducible representations of this group are the direct product of those
of R; and those of the group of two elements. They are denoted by D; with
e== -+ 1. The cage with ¢e=—1 corresponds to the «pseudo» quantities.
With the convention of this paragraph, U, the inversion through the origin
in isotopic space has the eigenvalue ¢ = g(— 1)’. This quantity is the « parity »
in isotopic space.

Representations of the mesons. ~ The invariance of the interaction (see (35))
with respect to U gives:

(44) UHU-= },Up, U {§iT,1,it,Fp* — PriT.5iv.F ],

and from (15) and (39)

(44’) UHU == {,0,Up;, U], .
"Therefore
(45) U(pir Utl= aiCr(pir .

For mesons ¢t = #.{,; hence the value of the ¢ of their representation. Mesons
with 7T'= 0 belong to the Df representation and mesons with 7= 1 belong
to D

For instance, the pseudoscalar symmetric mesons (as very likely m-mesons
are) belong to D).

Representations of the nucleons. — Nucleons belong to the reducible repre-
sentation D), + D,,.
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4°4. Selection rules specific to charge conjugation and charge independence. —
The only new selection rules due to charge conjugation, which can be expected
by restricting the hypothesis of charge symmetry to charge independence,
will arise from the identification of corresponding charged and neutral mesons
as different isotopic states of the same particle.

For instance, if the isotopic spin is a good quantum number in the re-
action (32)

(46) (gt L opo

it is easy to see that {* must be a vector meson. The possibility of {* being
a Sv meson, which was allowed by charge symmetry is now forbidden by charge
independence.
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APPENDIX

We restrict ourselves (*) to systems composed of particles of spin 0, 1/2,
and 1; the case of particles of spin 1 with mass zero (y) must be considered
separatly. The total angular momentum J and the parity « are given for
the center of mass frame of reference.

Conservation of the angular momentum.

One spin 0 particle |- one v . . . J 50, see for instance ()
TWO Y « v v v v v v v e J #£1 (34%)
Two identical spin 0 particles . . J even, see for instance (°¢)

(*®*) F. C. PoweLL at the Copenhagen conference, June 1952.

(3%) The complete list for particles of any spin is given in (37) and notes with
G. BoNNEVAY to appear shortly in . B. Acad. Sci. Paris.

(*Y) L. D. LANDAU: Dokl. Akad. Nauk. SSSR, 60, 207 (1948); also E. WIGNER
quoted by J. STEINBERGER: Phys. Rev., 76, 1180 (1949).

(*®) C. N. Yana: Phys. Rev., 77, 242 (1950).

(38) D. C. PrASLEE: Helv. Phys. Acta, 23, 845 (1950).



SELECTION RULEX IMPOSED BY CHARGE CONJUGATION 339

Conservation of parity.

Particle N == scalar, I"— vectorial, _1-: pseudovectorial, P = ps. se.

J 0 1 1 0
U + — _|_ - -
Two particles of spin 0 . . . . . w==(— 1)uu,, (%)
One of spin 0, one of spin 1 . . if J =0, only 4 =— wu,, (%)
"Twoy . . . . .. ... ... ifd odd, only u==- 1 (33%)
Three particles of spin 0 . . . . if J=0, only u = wu,u, (¥

Note that for a system of one Dirac particle and its antiparticle, all sets
of J, u are allowed, but u — - (— 1)*, where L and/or L - 2 is the relative
orbital momentumm of the large components (3:37),

(*7) L."MicugL: Compt. Rend. tead. Sei. Paris, 234. 703 and 2161 (1951).

RIARSUNTO (%)

L’autore fa uno studio sistematico sull'invarianza delle teorie dei campi rispetto
alla coniugazione delle cariche, allo scopo di indicare tutte le possibili regole di sele-
zione derivanti dalla coniugazione delle eariche, da sola o combinata con la simmetria
o lindipendenza delle cariche. Si dimostra che usando il formalismo di spin isotopico
Pinvarianza rispetto alla coniugazione delle cariche corrisponde alla conservazione
della pariti isotopiea.

(*) Traduzione « curn delle Redazione.



